EDI CON USA 2018

All-Silicon Active Antennas for High Performance mmWave Systems (Room Ballroom G)

Active millimeter-wave antennas will be deployed in unprecedented volumes over the next few years, fueled by the rapidly emerging 5G wireless (fixed wireless access and enhanced mobile broadband) and satellite communications systems. Millimeter-wave spectrum is attractive for telecom and satellite network operators due to the availability of large bands of contiguous spectrum, allowing for increased capacity, lower latency, and the ability to offer more services. Unlike some of the early mmWave ICs used in military phased arrays, multi-channel silicon beamformer ICs are now recognized as being fundamental to reducing the cost of these active antennas as the way to commercialize phased arrays. The combination of high performance silicon processes together with advanced analog and digital design techniques has accelerated the adoption of mmWave ICs to the extent that advanced 5G and SATCOM networks are now anticipated several years earlier than the industry originally projected. Additionally there are several antenna system architectures being adopted for 5G, depending on fixed wireless access, traditional radio access networks, CPE and UE applications. In this paper, we will discuss some of the key considerations for active antennas for multiple applications and discuss how silicon ICs are addressing the needs to make the deployment of commercial phased arrays successful.