2018FLEX

Short Course 3: Flexible Device Integration & Packaging (Room Cypress)

12 Feb 18
1:00 PM - 4:00 PM

Tracks: IC/Hybrid Integration, Integration, Manufacturing on Flex, Products

3. Flexible Device Integration & Packaging
Pradeep LallAuburn University

In this course, manufacture, design, assembly, and accelerated testing of flexible hybrid electronics for applications in some of the emerging areas will be covered. Flexible hybrid electronics opens the possibilities for the development of stretchable, bendable, foldable form-factors in electronics applications which have not been possible with the use of rigid electronics technologies. Flexible electronics may be subjected to strain magnitudes in the neighborhood of 50-150 percent during normal operation. The integration processes and semiconductor packaging architectures for flexible hybrid electronics may differ immensely in comparison with those used for rigid electronics. The manufacture of thin electronic architectures requires the integration of thin-chips, flexible encapsulation, compliant interconnects, and stretchable inks for metallization traces. A number of additive manufacturing processes for the fabrication and assembly of flexible hybrid electronics have become tractable. Processes for handling, pick-and-place operations of thin silicon and compliant interposers through interconnection processes such as reflow requires an understanding of the deformation and warpage processes for development of robust process parameters which will allow for acceptable levels of yields in high-volume manufacture. Modeling of operational stresses in flexible electronics requires the material behavior under loads including constant exposure to human body temperature, saliva, sweat, ambient temperature, humidity, dust, wear and abrasion. The strains imposed on flexible stretchable electronics may far exceed those experienced in rigid electronics requiring the consideration of finite-strain formulation in development of predictive models. The failure mechanisms, failure modes, acceleration factors in flexible electronics under operational loads of stretch, bend, fold and loads resulting from human body proximity are significantly different than rigid electronics. The testing, qualification and quality assurance protocols to meaningfully inform manufacturing processes and ensure reliability and survivability under exposure to sustained harsh environmental operating conditions, may differ in flexible electronics as well. A number of product areas for the application of flexible electronics are tractable in the near-term including Internet-of-Things (IoT), medical wearable electronics, textile woven electronics, robotics, communications, asset monitoring and automotive electronics.